AI is Getting Better At Mind Reading…it's going to be going full "Minority Report" soon

lightbright

Master Pussy Poster
BGOL Investor


Keep Your Digital Life Private: Stay Safe & Secure Online with NordVPN: https://bit.ly/3pwqtus Dive deep into the fascinating world of AI with our latest video, "AI is Getting Better At Mind Reading." This video explores the groundbreaking advancements in artificial intelligence that are pushing the boundaries of what we thought was possible, from reading thoughts to predicting behaviors. Our first stop is the Neuralink project spearheaded by visionary entrepreneur Elon Musk. We delve into how this revolutionary technology seeks to bridge the gap between the human brain and artificial intelligence, setting a new standard for human-computer interaction. Next, we uncover how AI algorithms are decoding dreams, offering unprecedented insights into our subconscious minds. These developments have enormous implications, not only for understanding the human psyche but also for fields like psychology and neuroscience. We then explore how AI is predicting human behavior through advanced data analysis. From personalizing your online experience to predicting potential health risks, the applications of such technology are far-reaching and transformative. The video further delves into the realm of AI-generated personalized content. We illuminate how AI is harnessing our thought patterns to create custom content that resonates with us on a deeply personal level. Moreover, we delve into the development of Emotional AI and how it's revolutionizing the way we understand and analyze emotions in real-time. This technology has the potential to shape everything from customer service to mental health treatments. Our exploration wouldn't be complete without discussing the controversial AI-powered surveillance technology. We examine the ethical implications of these advances and their potential impact on privacy and civil liberties. We then tackle Facebook's brain-reading technology. This social media giant is making strides in AI that can translate thought into text, a development that could redefine communication as we know it. Finally, we delve into AI's role in Natural Language Processing (NLP) and its potential in mind reading. This technology's ability to understand, interpret, and generate human language could revolutionize how we interact with machines.
 
Last edited:

Brain Activity Decoder Can Reveal Stories in People’s Minds

AUSTIN, Texas — A new artificial intelligence system called a semantic decoder can translate a person’s brain activity — while listening to a story or silently imagining telling a story — into a continuous stream of text. The system developed by researchers at The University of Texas at Austin might help people who are mentally conscious yet unable to physically speak, such as those debilitated by strokes, to communicate intelligibly again.

The study, published in the journal Nature Neuroscience, was led by Jerry Tang, a doctoral student in computer science, and Alex Huth, an assistant professor of neuroscience and computer science at UT Austin. The work relies in part on a transformer model, similar to the ones that power Open AI’s ChatGPT and Google’s Bard.
Unlike other language decoding systems in development, this system does not require subjects to have surgical implants, making the process noninvasive. Participants also do not need to use only words from a prescribed list. Brain activity is measured using an fMRI scanner after extensive training of the decoder, in which the individual listens to hours of podcasts in the scanner. Later, provided that the participant is open to having their thoughts decoded, their listening to a new story or imagining telling a story allows the machine to generate corresponding text from brain activity alone.

“For a noninvasive method, this is a real leap forward compared to what’s been done before, which is typically single words or short sentences,” Huth said. “We’re getting the model to decode continuous language for extended periods of time with complicated ideas.”

The result is not a word-for-word transcript. Instead, researchers designed it to capture the gist of what is being said or thought, albeit imperfectly. About half the time, when the decoder has been trained to monitor a participant’s brain activity, the machine produces text that closely (and sometimes precisely) matches the intended meanings of the original words.

For example, in experiments, a participant listening to a speaker say, “I don’t have my driver’s license yet” had their thoughts translated as, “She has not even started to learn to drive yet.” Listening to the words, “I didn’t know whether to scream, cry or run away. Instead, I said, ‘Leave me alone!’” was decoded as, “Started to scream and cry, and then she just said, ‘I told you to leave me alone.’”

predictions_perceived.png

This image shows decoder predictions from brain recordings collected while a user listened to four stories. Example segments were manually selected and annotated to demonstrate typical decoder behaviors. The decoder exactly reproduces some words and phrases and captures the gist of many more. Credit: The University of Texas at Austin.

Beginning with an earlier version of the paper that appeared as a preprint online, the researchers addressed questions about potential misuse of the technology. The paper describes how decoding worked only with cooperative participants who had participated willingly in training the decoder. Results for individuals on whom the decoder had not been trained were unintelligible, and if participants on whom the decoder had been trained later put up resistance — for example, by thinking other thoughts — results were similarly unusable.

“We take very seriously the concerns that it could be used for bad purposes and have worked to avoid that,” Tang said. “We want to make sure people only use these types of technologies when they want to and that it helps them.”

In addition to having participants listen or think about stories, the researchers asked subjects to watch four short, silent videos while in the scanner. The semantic decoder was able to use their brain activity to accurately describe certain events from the videos.

The system currently is not practical for use outside of the laboratory because of its reliance on the time need on an fMRI machine. But the researchers think this work could transfer to other, more portable brain-imaging systems, such as functional near-infrared spectroscopy (fNIRS).

“fNIRS measures where there’s more or less blood flow in the brain at different points in time, which, it turns out, is exactly the same kind of signal that fMRI is measuring,” Huth said. “So, our exact kind of approach should translate to fNIRS,” although, he noted, the resolution with fNIRS would be lower.

tang-prepping-mri-participant2400x1920.jpg

Ph.D. student Jerry Tang prepares to collect brain activity data in the Biomedical Imaging Center at The University of Texas at Austin. The researchers trained their semantic decoder on dozens of hours of brain activity data from participants, collected in an fMRI scanner. Photo credit: Nolan Zunk/The University of Texas at Austin.

This work was supported by the Whitehall Foundation, the Alfred P. Sloan Foundation and the Burroughs Wellcome Fund.

The study’s other co-authors are Amanda LeBel, a former research assistant in the Huth lab, and Shailee Jain, a computer science graduate student at UT Austin.

Alexander Huth and Jerry Tang have filed a PCT patent application related to this work.

For more information about the project, visit the full press release at the College of Natural Sciences.
 
Last edited:
Back
Top